jueves, 2 de diciembre de 2010

Atenuación natural

La atenuación natural, aunque no está considerada como una técnica de descontaminación propiamente dicha, está englobada dentro de las técnicas de
remediación in situ de muy bajo coste. Su característica principal es la utilización de los procesos fisico-quimicos de interacción contaminante-suelo y los procesos de biodegradación que tienen lugar de forma natural en el medio. Estos procesos se conocen como procesos de biotransformación natural.
Los procesos de biotransformación natural son aquellos que van a reducir la concentración de los contaminantes y entre los que se encuentran la dilución, dispersión, volatilización, adsorción, biodegradación y aquellas reacciones químicas que se producen en el suelo o en el agua y que contribuyen de alguna forma a la disminución de la contaminación.
Esta técnica se aplica en aquellos casos en los que exista contaminación tanto en suelos como aguas subterráneas producida por hidrocarburos de tipo halogenado o nohalogenado.
Entre los factores que influyen en la eficacia y viabilidad de la atenuación natural destacan:
– La exigencia de protección y el riesgo de los potenciales receptores durante el tiempo que dura la atenuación.
– La existencia de unas condiciones geológicas y geoquímicas favorables.
– Las necesidades de reducción de la masa contaminante en un intervalo razonable de tiempo (meses a años), tanto en la superficie del suelo como en la zona más subsuperficial del mismo, así como de la calidad de las aguas subterráneas.
– Confirmación de la existencia de los tipos y número de poblaciones de microorganismos que puedan biodegradar los contaminantes.
– Producción y conservación en el medio de subproductos de carácter persistente o más tóxicos que los iniciales, durante y después de la atenuación natural.
– No existencia de producto libre en flotación sobre el nivel freático
– Para condiciones aerobias la condición ambiental óptima de concentración de oxígeno disuelto en el agua debe ser superior a 0,5 mg/l.
– La concentración de los compuestos utilizados como aceptores de electrones en condiciones anaerobias debe ser superior a 0,21 mg/l para nitratos, la de Fe3+ para que pueda ser reducido a Fe2+ debe ser superior a 21,8 mg/l y la de sulfatos mayor de0,21 mg/l.
– El potencial redox debe estar situado entre un rango de -400 y 800 mV.
– Existencia de un coeficiente de retardo favorable para que se produzcan los fenómenos de sorción con suficiente eficacia.
– Que se produzca una dilución suficiente para que la concentración se vea disminuida aguas abajo del foco contaminante.
– La dispersión de los contaminantes aguas abajo del foco y en la dirección de flujodebe ser adecuada para que exista una mayor disponibilidad proporción entre los contaminantes y los aceptores de electrones.

Fitorremediación:

Fitorremediación: otro regalo del reino vegetal
La fitorremediación podría ser definida como el conjunto de métodos para degradar, asimilar, metabolizar o detoxificar metales pesados, compuestos orgánicos, radioactivos y petroderivados por medio de la utilización de plantas que tengan la capacidad fisiológica y bioquímica para absorber, retener, degradar o transformar dichas sustancias a formas menos tóxicas. Asimismo, podría definirsela como la capacidad de ciertas plantas (terrestres, acuáticas, leñosas, etc.) y los cultivos in vitro derivados de ellas con el fin de remover, contener o transformar productos contaminantes del entorno.Las bases conceptuales de la fitorremediación provienen de la identificación de plantas que hiperacumulan metales. Existen vegetales que tienen esta capacidad intrínseca pero también pueden obtenerse plantas con estas capacidades por medio de técnicas propias de la Ingeniería Genética.Promisoriamente, las plantas pueden ser utilizadas como bombas extractoras de bajo costo para depurar suelos y aguas contaminadas, además, algunos procesos degradativos ocurren en forma más rápida con plantas que con microorganismos. Es un método apropiado para descontaminar superficies grandes o para finalizar la descontaminación de áreas restringidas en plazos medianamente largos. Sin embargo, es preciso considerar que el proceso se limita a la profundidad de penetración de las raíces o aguas poco profundas.No obstante, la fitotoxicidad es un limitante en áreas fuertemente contaminadas y como los tiempos del proceso pueden ser muy prolongados, y además la biodisponibilidad de los compuestos o metales es un factor limitante de la captación, es necesario comprender mejor la naturaleza de los productos de degradación (fitodegradación)






Ejemplos en laboratorio y a campo se han realizado tanto en nuestro país como en el exterior, tales como:
Estudio con plantas silvestres de girasol, geranio y mostaza de la India, comprobándose que el geranio tolera más la contaminación por niquel y por plomo mientras que la mostaza es más tolerante al cadmio. Rizofiltración para la extracción de Uranio de aguas subterráneas en Asthabula, Ohio, EEUU.
Rizofiltración a nivel de cultivo in vitro para detoxificar compuestos fenólicos en aguas contaminadas (tales como los derivados de los herbicidas tradicionales y contaminantes como el 2,4-D) en la Universidad Nacional de Río Cuarto, Córdoba por el grupo de investigación de la Dra. Elizabeth Agostini.
Fitovolatilización de mercurio (Hg) por medio de plantas transgénicas (Arabidopsis thaliana) que fueron transformadas con dos genes provenientes de microorganismos que pueden transformar el mercurio iónico en mercurio más estable.

Biorremediación

¿Qué es la biorremediación?

La biorremediación es el uso de seres vivos para restaurar ambientes contaminados. Es un concepto que no se debe de confundir con depuración. La depuración es la eliminación, ya sea por métodos físico/químicos o biológicos, de un contaminante antes de que éste alcance el medio ambiente. Cuando la contaminación ya se ha producido, se precisa restaurar el ecosistema contaminado, para lo que se pueden utilizar diversas estrategias. Una de ellas es la biorremediación.

¿Qué organismos participan?

Se pueden emplear diversos organismos en los procesos de biorremediación. Los más usados son los microorganismos (tanto bacterias, como algas y hongos) y las plantas (en procesos llamados fitorremediación), pero también se pueden utilizar otros seres vivos tales como los nemátodos (vermiremediación).
Entre los microorganismos destacan especialmente las bacterias, los seres vivos con mayor capacidad metabólica del planeta. Las bacterias pueden degradar prácticamente cualquier sustancia orgánica. Si la sustancia se degrada completamente se habla de mineralización; este es el proceso ideal, pero no siempre ocurre. Algunas sustancias no son degradadas sino transformadas en otras (biotransformación). La biotransformación puede ser peligrosa, ya que la nueva sustancia formada puede ser tan nociva o más que la de partida. Finalmente hay sustancias que no son degradadas y se las denomina recalcitrantes. Éstas se acumulan durante mucho en el medio ambiente, especialmente si además son resistentes a procesos físico/químicos como la radiación ultravioleta o la oxidación.
Las bacterias además pueden eliminar los contaminantes en ambientes donde hay oxígeno (llamados aeróbicos), pero también en ambientes sin oxígeno (llamados anaeróbicos), ya que pueden respirar otras sustancias diferentes al oxígeno (aceptores de electrones), como por ejemplo el nitrato, el sulfato, el hierro (III), el manganeso, el selenio y un largo etcétera.

¿Qué tipos de contaminantes se pueden eliminar por biorremediación?

Todos aquellos contaminantes que puedan ser degradados o transformados por los seres vivos son susceptibles de ser eliminados mediante procesos de biorremediación. Los compuestos orgánicos suelen ser degradados total o parcialmente y eliminados por completo del ecosistema. Por ejemplo, compuestos contaminantes tales como el tolueno, el fenol o los polibifenilos clorados (PCBs) pueden ser utilizados como fuente de carbono por bacterias, tanto en condiciones aeróbicas como anaeróbicas. Bacterias de los géneros Pseudomonas, Ralstonia, Burkholderia o Mycobacterium pueden eliminar hidrocarburos aromáticos como el tolueno o el naftaleno, pesticidas como las atrazinas, aditivos de la gasolina como el tricloruro de etilo o sustancias venenosas como el cianuro potásico, tanto de ambientes sólidos (suelos) como líquidos (rios y mares).
Pero, además muchas bacterias son capaces de modificar sustancias químicas peligrosas, transformándolas en otras menos tóxicas. Así, algunas bacterias pueden reducir la biodisponibilidad (hacerla menos accesible y por tanto menos tóxica) de metales pesados tales como el mercurio, el arsénico, el cromo, el cadmio, el zinc o el cobre.
.

external image biore-2.jpg?w=300&h=229


Figura: Ejemplo del empleo de bacterias para la eliminación de un contaminantes en capas profundas del suelo. En este ejemplo las sustancias contaminantes están haciendo peligrar un acuífero. Para su eliminación se inyecta en el suelo nutrientes y aceptores de electrones que favorecen el crecimiento de microoganismos que acabarán eliminando la sustancia tóxica.